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4- ABSTRACT 

f l J 1 7  
Formulas are derived giving the second-order 

secular and long-period effects on the orbit of the satell i te 
of an oblate planet. The presentation i s  in  terns  of t h e  

standard osculating elements and their averages. 

The derivation involves the second-order method 
of averages for solving nonlinear differential equations. 
In the application to the present problem, this second- 
order theory can be very cumbersome. However, by intro- 
ducing an auxiliary function, $, i t  has  been possible to 
simplify the equations to a manageable form. ,&#L+L 

1. INTRODUCTION 

The method of averages developed by N. M. Krylov and N. N. Bogoliubov in  the study of nonlinear 

osc i l la t ions  h a s  been generalized by Bogoliubov and J. Mitropolsky in their  t rea t i se  Asymptot ic  Methods 

in the Theory of Nonlinear Osci l lat ions (Ref. 1). For the treatment of osc i l la t ing  systems,  the methods 

developed by t h e s e  authors have  not a s  ye t  been fully exploited by astronomers.  For example, u s ing  the 

averaging method in sa te l l i t e  theory the secu la r  and long-period r a t e s  of the osculat ing elements can be 

expressed  through second-order terms in the small  parameter, with coeff ic ients  exact  in eccentricity,  t hus  

avoiding expansions in powers of the eccentricity.  

The  labor involved in the derivations i s  lengthy but i s  believed to be considerably simpler than, for 

example, the von Zeipel method used  by Brouwer, Kozai, and others  (Refs.  2, 3). As far as can be ascer ta ined,  

the only other attempt a t  applying the second-order averaging method to ce les t ia l  mechanics  is currently be ing  

1 
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pursued by W. T. Kyner (Ref. 4), whose approach deals directly with the  equat ions  of motion rather than with 

the canonical form used  here. It i s  believed tha t  a sav ing  of labor i s  e f fec ted  and tha t  symmetries a re  be t te r  

exhibited by the canonical approach. A s  of the  present  time, Kyner’s second-order r e su l t s  (referred to  in 

Ref. 4) have  not been available to the authors of t h i s  paper. 

To check the validity of the r e su l t s  obtained herein, a comparison i s  made with the  formulas of 

Pe t ty  and  Breakwell (Ref. 5). Numerical computations were a l so  performed, but neither check was  entirely 

satisfactory.  These  evaluations a re  d i scussed  in detail  in Sec t ions  VI and  VII. 

T h i s  paper cons i s t s  of three parts.  In Section I1 the averaging  procedure i s  developed and  formulas 

appropriate for the  subsequent ana lys i s  a re  derived. The derivations here  a re  simpler and more straight- 

forward than those  found in Ref. 1. In Sec t ions  111, IV, and V, the  theory i s  applied to a sa t e l l i t e  problem of 

ce l e s t i a l  mechanics,  with particular emphasis  on the obla teness  perturbations.  Finally,  in Sec t ions  VI and  

VII, the r e su l t s  a re  evaluated in t e r n s  of other methods,  and  numerical r e su l t s  a r e  s ta ted .  

2 
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11. THE METHOD OF AVERAGES 

We consider the sys tem of nonlinear differential equat ions  

E << 1 

with X’(x,t) = X’(x ‘ 1 2  , x  , , zn,t), etc. ,  E a small  parameter. The independent variable t i s  such that 

X ‘ ( z , t ) ,  Y i ( x , t )  a re  periodic in  t ,  of period 7 ,  s o  that Xi(x,t + 7 )  = Xi(x,t), Y i ( x , t  + 7) = Y’(x,t). We will be 

in te res ted  only in terms through E’ (second-order perturbation theory). The equat ions  for perturbed Keplerian 

orb i t s  can be c a s t  in t h i s  form by u s e  of the method of variation of parameters (Ref. 6). Alternatively,  such  

motion may be descr ibed  i n  terms of the Lagrange planetary equations which a re  already of t h i s  form (Ref. 3). 

We wish to find x ’ ( t ) ,  i = 1, 2, ---,n, which satisfy Eq. (1) to within e 3  terms. The method of 

ave rages  i s  bas ica l ly  a scheme for separa t ing  x ’ ( t )  into two parts,  a s teady-s ta te  or long-period term and a 

short-period term. The procedure, following Bogoliubov and  Mitropolskyl, i s  to introduce a smooth set of 

var iab les  E’, i = 1,2,  .e-, n, which behave like xi without the  shor t  period terms. 

We def ine  

d e i  

dt  
- =  E A ’  (E )  + e 2  Bi (e) 

in which the F’, G’ a r e  periodic in t, of period r, with no s teady-s ta te  components, and  the Ai, B’ a r e  

independent o f t .  T h u s  

i = 1 , 2 , . . . , n  

‘See Ref. 1, Eqs. (24.63) and (24.64). 

3 
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dAi  aBi  

at  at  
- 0  - -  _ - -  

with the ci held constant during the integration. 

We wish to determine the A i ,  Bi, F i ,  Gi such  that xi of Eq. (3) will s a t i s fy  Eq. (1) to within c 3  

t e rns .  One advantage of Eqs .  ( 2 )  and (3) over Eq. (1) i s  that  (for s a t e l l i t e  lifetime s tudies )  a knowledge of 

ci ( t )  yie lds  the long-term behavior of x i ( t ) ,  s i n c e  x i ( t )  - c l ( t )  merely def ines  the  short-period fluctuations 

from the average  motion. Furthermore, Eq. (3) can be integrated numerically us ing  much larger integration 

s t e p s  than can Eq. (1). 

From Eqs.  (3) and (1) we have  

dxi d E i  d F i  d e a  a F i  aGi 
€ 2  ~ 

dt dt aEa dt at  a t  
- = -  + € -  - + E -  + 

r 1 

neglecting e 3  and higher t e r n s  and  making u s e  of the summation convention. The right-hand side of Eq. (6) 

r e su l t s  from a Taylor s e r i e s  expansion about xi = ti. 

Equat ing  powers of E yie lds  

a t  

4 
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From Eqs. (7) i t  follows that A i ( c )  i s  the steady-state term of Xi(E,t), and d F i / a t  i s  the periodic 

part of ~'(e, t 1. n u s  2 

with X'(e,t) = Xb(c) + XL(c,t), and the integral of Eq. (9) being the indefinite integral of Xi (E,t) 

involving no constants of integrations, denoted by X'. 
P --. 

From Eqs. (7) i t  a l so  follows that 

at 
r 

Returning to Eqs. (2) and (31, one notes  that 

r 1 

'The subscript 0 denotes steady-state terms, and the subscript p denotes the purely periodic part of the 
functions. In evaluating the integrals (8) and (9) i t  is assumed that 6 is held constant. 

(10) 

~ 5 
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r 1 

Equat ions  (12) and (13) are the bas i c  forms for applying the second-order averaging process .  In Section 111 

the  equat ions  for satell i te theory will be c a s t  in appropriate form, and  the various functions appearing in 

Eqs. (12) and (13) will be evaluated in  terms of t he  orbital elements.  

6 
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111. EQUATIONS FOR SATELLITE MOTION 

The spec i f i c  problem ana lyzed  he re  concerns satellite motion in the presence  of a force field 

produced by a slightly distorted m a s s  spheroid.  Such a force field h a s  a potential  which can be expanded 

in spher ica l  harmonics s ta r t ing  with 

Taking the equatorial p lane  of the spheroid a s  the reference plane,  the  la t i tude  i s  ,8 and p i s  the gravity 

constant.  The theory will be developed he re  for the J-term only, neglec t ing  all higher-order terms. However, 

the solution to the corresponding sa t e l l i t e  motion will be carried to order 12,  i n  the s e n s e  of the second-order 

averaging method as explained in Section I1 above. 

Following Brouwer (Ref. 2) ,  Delaunay variables a r e  introduced as follows: 

L = (pa)% 

G = L ( 1 - e V  

H = G c o s l  

In t e r n s  of these variables,  the Hamiltonian i s  given by 

P 2  P4J 

2L2 3L6 
F = -  + -  

1 = mean anomaly 

g = argument of pericenter 

h = longitude of a scend ing  node 

3 H 2  3 H 2  

2 G2 

R( L ,  G, H ,  1, g) 
Jp4 

2L2 3G6 
+ -  - P2 - -  

where R i s  given explicit ly by Eq. ( 3 3 ,  and the equations o f  motion are 

7 
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dL d F  
- 

dt ai 

dH d F  

dt ah 
- = -  

dh f3F 

dt 6” 
- = - -  

Here, a, e, and  I are the usua l  oscula t ing  elements,  and f i s  the  true anomaly. 

T h e  u s e  of canonical variables with the corresponding simplicity of the equat ions  of motion as 

exhibited in Eqs .  (16) i s  e s sen t i a l  to the present  development from a prac t ica l  standpoint.  For, without such  

simplicity,  the functions appearing on the right-hand s i d e  of Eqs .  (12) and (13) become excess ive ly  complex. 

The potential (Eq. 14) l e a d s  to a Hamiltonian (Eq. 15) independent of h and  t. T h i s  fact  further 

s impl i f ies  t he  calculation. However, the procedure would s t i l l  apply were the Hamiltonian to contain h a n d  t, 

provided only that t entered  as a slowly varying term. All t he  short-period variations must  be  the r e su l t  of 

terms involving the  mean anomaly 1 and its multiples. 

Equat ions  (16) should now be rewritten with 1 as independent variable (corresponding to the inde- 

pendent variable t of Eq. 1). This transformation i s  effected by dividing the  d l / d t  equation into each of the 

remaining equations of the set (16). 

If 

3 

then 

dl L 3  dR 
- -  
dt L 3  G6 dL  

8 

(17) 

(18) 
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and to order c 2  the equat ions  of motion reduce to 

dG L3  d R  L6 dR d R  

dl G6 dg G12 dg dL 
_ _ = e - - +  €2 --- 

In comparing with Eq. (I), the dependent variables J = zl, - a * ,  z5 a re  identified with L, G, H, g, 

and h, respect ively,  and  the independent variable i s  1. 

If in dea l ing  with some other potential ,  t appears explicit ly in F ,  or if it  is des i red  to re la te  the 
I 

~ 

orbit t o  time, then i t  is necessary  to return to  Eq. (18). By introducing the slowly varying variable T 

l L L 3  dl 7 ) = t - -  
1 

P2 O 

the value of t can be derived from the equation 
1 

I 
1 Here, 7 i s  to be considered as a sixth dependent variable. 

(24) 

i 9 
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The final step in  the formulation of t he  equations i s  the identification of the  functions X i  and Y i .  

Comparison of Eq. (1) with Eqs .  (19) to (25) shows tha t  

G6 dZ 

G6 ag 

G6 dh 

G6 dH 

Section IV will be devoted to simplifying the  form of Eqs .  (12) and (13) after making the subs t i tu t ions  

ind ica ted  by Eqs .  (26). 

10 L 
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IV. EQUATIONS FOR AVERAGED DELAUNAY VARIABLES 

The var iab les  will be considered one a t  a t ime.  For L, the equation corresponding to Eq. (12) for 

j = 1 may be written3 

- 
- dL = € X k  + E 2  

dl 

Using the  identification from Eq. (261, i t  is seen  that 

(27) 

s i n c e  the integration i s  e f fec ted  holding the var iab les  L, G, H, g, and h constant,  and  s i n c e  R is assumed  

to  be per iodic  in 1. 

The terns in bracke ts  reduce to 

where 

R + = -  
G6 

and subsc r ip t s  denote partial  derivatives.  

3See footnote 2. Also, repeated index denotes use of summation convention. 

11 



JPL Technical Report No.  32-482 

In Eq. (29), the  t e r n s  combine with the he lp  of the following relations:  

showing that the first and  third terms cancel.  Similarly the fourth and  s ix th  terms cance l  and the  fifth and  

seventh terms cancel, l eav ing  only the second and eighth terms. However, 

Thus only one  term remains in Eq. (27), which reduces  to 

I t  follows from Eq. (33) tha t  

- 
d L  
- -  - 0  
dl 

(34) 

if time (hence a l s o  7 7 )  d o e s  not appear explicit ly in R. Since t h i s  i s  the c a s e  for t h e  perturbing function due 

to each  of the zonal harmonics of an obla te  planet,  i t  follows tha t  none of these g ives  r i s e  to secu la r  or long- 

period second-order terms in the semimajor ax is .  

The remaining par t  of the ana lys i s  will be  res t r ic ted  to  the c a s e  in  which R i s  due to the second 

zonal harmonic for an obla te  spheroid. T h u s  R i s  determined by Eq. (15), and can  be written 

12 
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where 

Note that R i s  independent of h and that time does not appear explicitly. Also ,4  

2-T 2 n  
1 G 3  G 3  

L 3  
Kdl =; - Fd (1 + e cos f > - ' R d f  = A - 

- 
'he  equation for determining G is 

d G  - - Ex: + E 2  [.: + (ir a] 
- -  

dl 

n e  value of X: is o s ince  

Using Eq. (%), the terms in brackets of Eq. (38) reduce to 

t 37) 

(40) 

3 

= L  6 

4Although the notation requires that averaged variables be identified with a bar, this will not always be done 
in the sequel when the meaning i s  otherwise clear. 

13 
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in which 4 i s  given by Eq. (30). Since 4 i s  independent of h,  the l a s t  term in Eq. (40) can be  omitted. 

Write 

then Eq. (38) reduces to 

- 
Proceeding to the  next variable, H ,  i t  follows that 

- 
dH 

dl 
- -  - 0  

s ince  R i s  independent of h. 

- 
For g the situation i s  more complicated, s ince  the  term in E is not zero. The rate equation i s  

with 

XI = - L 3  a [' (R).] = ?! - 
a G  G6 G 4  G3 dG G 4  

while the  terms of Eq. (44) in bracke ts  reduce to 

6 '4 - L  - 
dG 

14 



IPL  Technical Report No. 32-482 

Thus ,  Eq. (44) can b e  written 

F ina l ly ,  the h equation is 

- 
3H dh 

dl  G 5  
_ - -  E - L6$hH E 2  - -  

I t  may be noted at th i s  point t ha t  the equations for the  averaged variable may be very simply ex- 

p re s sed  in t e r n s  of the function 

Thus ,  the averaged  Delaunay var iab les  sa t i s fy  the  system of differential equat ions  

- 
dG 

dl 
- = rg 

dH 

dl 
- -  - rh 

- 
dh 

dl 
- -  - - rH 

I t  remains to eva lua te  $J , + G ,  and $hH.  The f i r s t  term in + (Eq. 41) involves  the  average  of 1/2 R2,  as 

follows: 
g 

15 
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But 

and 

= 2 ~ 3  [k2+ B$ ( 1 + 3 e 2 +  e.> 

( : $  32 

B 2 e 4  
= A B e 2  3 t - e c o s 2 g  + - 

The second term of $ in Eq. (41) is 

B e 2  

8 
cos  4g 

16 
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Thus 

r 

The derivatives of + are then 

5B - 7 B e 2  

ag 2 L6G7 
- s in  2g WJ __- - - -  

1 

L6G7 
( 5 2 )  .___ 

(53 )  

- -  - L{ 6 -  - B + - 55 B 2 + - e 2  ( 2 1 -  9 B  + 25B 2 ) 23 

dG L6G8 2 12 4 

L 

3 c o s 1  
- 

6” L ~ G ~  

- (+ - B )  + (t + .> e 2 +  (t - B )  

- 

and the rate equations are (with B = 3 / 2  s in2  I ) :  

- 
dL - = o  
dl 

cos  2g ] ( 5 5 )  

- 
dH 
- -  - 0  

dl 

17 
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- 1 

18 



JPL Technical Report No. 32-482 

V. EQUATIONS FOR THE OSCULATING ELEMENTS a, e, I ,  W ,  R 

Since the oscula t ing  e lements  are simply related to the Delaunay var iab les  ( s e e  Section III), i t  is 

merely a matter of direct  substi tution to obtain t h e  corresponding ra te  equations.  

Before writing these ,  however, it  i s  pertinent to no te  that, for second-order ra tes ,  t h e  substi tution 

procedure i s  valid. Consider,  for example, a function y = f ( x )  of a slowly varying variable x with periodic 

part  x of the form P 

2 
- 

x = X + E X  + E  11 
P P 

Then 

and  

in which [ x 2 1  i s  the  average  of x 2  over  one  period and is a function of X. I t  follows then that 
P o  P 

through second-order terms in  E provided g(X, i s  not of order 1 / ~  

19 
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Assuming, therefore, that direct substitution is permissible, the desired second-order rate equations 

are 

- 
d a  
- -  - 0  

dl 

- 

- -  d e  _ - - -  5 J 2  e (1 - e') s in2  I s in  2w (2 - s in2  I) 
dl 8 P4 15 

dl 16 p 4  

4 

9 

4 2 
+ - 55 s in  4 I + ~ ( 7  - - 

16 

cos 2w 

4 
+ -  

(62) 

(63) 

(65) 

20 
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VI. COMPARISON WITH PREVIOUSLY PUBLISHED RESULTS 

In ( 5 ) ,  Petty and  Breakwell  develop formulas comparable to those  l i s t ed  in Eqs .  (62) to (66). The 

referenced formulas, however, refer to var iab les  a s soc ia t ed  with a reference plane somewhat different from 

the oscula t ing  plane, and, furthermore, the der iva t ives  a re  given with r e spec t  to true anomaly rather than 

mean anomaly. In spite of t hese  differences,  the result ing r a t e  formulas coincide very closely with the 

present resu l t s .  

In fac t ,  comparing the  two s e t s  of equations term by term shows  tha t  dl /d l  agrees  exac t ly ;  dR/d l  

agrees  except  for one term, namely the 5/6 s i n 2 1  term in (66), which is given a s  13/6 s i n 2 1  in  Ref. 5; doj/dZ 

does  not agree  except in form; de/d l  does  not agree.  

Whether the two methods should agree to second order in ./ i s  not clear.  However, the p re sen t  

formulas have  been reviewed very thoroughly, and hopefully have no errors due to incorrect manipulation. 

Actually,  the de /d l  and dl /d l  equations a re  eas i ly  checked aga ins t  each other, s i n c e  

and 

- - 
d l  H dG 

dl  G 2  s in  I d l  
- =  

Thus 

- - 
d e  1 - e 2  s in  I dl  

dl  e cos  I dl 
_ _ = - - - -  

which checks  for the present  resu l t s ,  but not for Ref. 5. 

22 
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VII. COMPARISON WITH NUMERICAL CHECK 

To compute the averaged orbital  elements to the accuracy required for checking Eqs.  (62) to (66) to 

order J is a touchy bus iness  at best .  In any numerical example, the integration errors due to truncation and 

roundoff limit the precision of the computation. On the other hand, the  sca l ing  i s  constrained by the s i z e  of 

the first-order short-period fluctuations,  so  that i t  does not help matters  to magnify the perturbing forces  

beyond a certain amount. 

2 

Therefore,  only a token numerical check was  attempted. Using a 7094 computer, the equat ions of 

motion for an Earth sa te l l i t e  perturbed only by the J-tern were integrated for 30 days  (about 360 periods).  

The  value of J was  taken a s  0.00162345. The orbital semimajor a x i s  was  7985 km, giving a period of 1 hr  

58 min. 

To obtain the averages of inclination and eccentricity,  t hese  quant i t ies  were first  graphed for one  

complete period a t  the s ta r t  and one  complete period a t  the end of the orbit  as shown in F igs .  1 and 2. Then ,  

using points read off the graphs’, the averages were computed by Simpson’s rule. The  resu l t s  are shown in 

the table:  

30-day 

0.12310912 

Differences x lo4 

Computed Theoretical 

-0.3516 -0.2463 

+ 4.03 + 1.28 

I 

In reading the graphs,  the fifth decimal place i n  eccentricity and the fourth place in inclination are  question- 

able.  Thus ,  the differences are questionable even in  the first  digit indicated.  I t  can be concluded, only 

therefore, tha t  the computation i s  compatible with the theory-a  resul t  which is all  that  could be hoped for 

without a great  deal  more effort. The  theoretical  values of the differences shown above a r e  obtained by t h e  

method descr ibed in the Appendix. 

’ For the actual computation the graphs were scaled several t imes  larger than those shown. 

23 
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0 4 0  8 0  120 160 200 240 280 320 360 

MA, deg 

Fig. 1. Earth-satellite orbit: variation of osculating inclination over one 
orbital period, init ial ly  and after 30 days 

24 
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Fig. 2. Earth-satellite orbit: variation of osculating eccentricity over one 
orbital period, initially and after 30 days 
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VIII. CONCLUSIONS 

The second-order long-period and secu la r  terms in the  r a t e s  of t he  oscu la t ing  e lements  of the orbit  

of the  sa t e l l i t e  of an obla te  planet have been computed by the method of averages .  The derived formulas a r e  

valid for all eccentricity and all  inclination. Furthermore, t he  differential equation i s  s a t i s f i ed  to second  

order uniformly in time. 

The resu l t s  a re  applicable to the  s tudy  of sa te l l i t e  l ifetimes for which short-period terms a re  not 

pertinent. In particular, by combining these  formulas with first-order ra te  terms in the  higher-order harmonics 

and third-body terms, i t  should be  poss ib le  to construct an accura te  lifetime computer program. In such  a 

program for a lunar sa te l l i t e ,  for example, i t  would be poss ib le  to u s e  an integration s t e p  s i z e  of the  order 

of a day. 

Expansion of the present  r e su l t s  to inc lude  second-order short-period terms i s  a matter of some 

effort but i s  certainly feasible.  T h e  method could a l so  be  applied to other harmonics and to third-body 

perturbations. On the o ther  hand, application to terms of third order and  higher, though poss ib le ,  appears  t o  

be too involved to be worth while. 

One of the  strong points of the method of averages ,  as opposed, s a y ,  to the  von Zeipel method, i s  

that  the r e su l t s  are represented in terms of familiar variables.  There  i s  no success ion  of transformations or 

u s e  of auxiliary planes or other dev ices  to d is t rac t  the u s e r  from the  bas i c  quant i t ies  in which he  i s  

in te res ted .  

No attempt has been made in the  present  paper to integrate the  rate equations or to d i s c u s s  the 

behavior of t he  solution. Sufficient ana lys i s  of th i s  type has already appeared in  the  l i terature,  e.g., Ref. 5 .  

Furthermore, i n  any application, there i s  bound to be a combination of many perturbing factors,  SO that  an 

ana lys i s  which includes only the  J and J 2  equations would not be valid. 
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NOMENCLATURE 

A 

A' 

B 

Ri 

e 

- 
e 

f 

F 

G 

G 
- 

h 

h 
- 

H 

H 
- 

I 

I 

J 

- 

1 

L 
- 
L 

see Eq. (36) 

auxiliary function definitions implicit in Eq. (3) 

see Eq. (36) 

auxiliary function definition implicit in Eq. (3) 

eccentricity of osculating conic  

true anomaly 

auxiliary function definitions implicit in Eq .  (2) 

Hamiltonian ( s e e  Eq. 15) 

argument of pericenter 

smoothed va lue  of g 

auxiliary function definition implicit  in Eq. (2) 

~ ( 1 -  e')% 

smoothed va lue  of G 

longitude of ascending node of oscula t ing  e l l i p se  

smoothed va lue  of h 

G cos I 

smoothed va lue  of H 

inclination of p lane  of o scu la t ing  orbit to equator 

smoothed va lue  of I 

coefficient o f  second sec tora l  harmonic in expansion of gravity field 
( see  Section nI) 

mean anomaly 

p% a% 

smoothed value o f  L 

27 



JPL Technical Report No. 32-482 

P 

r 

R 

t 

U 

x = (xl, 

-. 
X L  

X'p 

xg, X L  , XG 

Y = ( Y ' , . . . , Y " )  

Y:, 

NOMENCLATURE (Cont'd) 

semi la tus  rectum 

radial  d i s tance  from center of m a s s  

perturbing part  of potential  ( s e e  Eq. 15) 

nonperiodic part  of R 

time (or independent variable) 

potential  function ( s e e  Section 111) 

rz dependent var iab les  ( s e e  Eq. 2)  

smoothed value of xi(,,, Eq. 3) 

functions in d. e .  (Eq. 2) 

nonperiodic part  of XI 

periodic part  of XI 

integral of X i  ( s e e  Eq. 7 )  

functions defined in Eq. (26) 

function in d. e. (Eq. 2) 

nonperiodic part  of Y l  

periodic part  of Y J  

integral of ~i ( s e e  Eq. 7 )  

P 

P 

y g , y L , y G  function defined in Eq. (26) 

a 

p gravity constant ( G M )  

semimajor a x i s  of oscula t ing  e l l i p se  

small  parameter ( see  Eq. 17) 

7 period of periodic variable 

R/G6 defined in Eq. (30) 

$ defined in Eq. (41) 
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APPENDIX. Integration of the Rate Equations 

For purposes of numerical check, i t  i s  convenient t o  obtain an ana ly t ic  integral  of the ra te  equat ions  

(Eqs .  61 to 65). This  i s  e f f ec t ed  by the usua l  i terative procedure. A first-order solution of t he  equations,  

which i s  ea s i ly  obtained, i s  subs t i tu ted  back into the equations,  which then can be integrated to y ie ld  a 

second approximation. 

T o  i l lustrate the procedure, consider t he  rate equation for e ( E q .  62). Since,  in the  first-order solution 
- - 

of the complete system, only 

the right-hand s ide  of Eq. (63), with 

and n a r e  not constant,  i t  i s  sufficient to consider w a s  the only var iab le  in 

;= J (. - ; 5 s i n 2 3  t 

P 2  

Substi tuting in Eq. (63) and integrating y ie lds  

- 

de - 5 J  e ( 1  - e 2 )  ~ (: - s i n 2  1 )  s i n 2 1  sin 2w 
dw 8 p 2  ( 2 -  5 s i n 2 1  

and 

(A-2) 

T h i s  l a s t  equation se rves  a s  the b a s i s  for the theoretical  value given in the numerical check. The 

particular example in the  tex t  involves  a ne t  change in w of approximately 50.90 deg. 

The corresponding formula for the change (in degrees)  of inclination i s  

(A-4.) 


